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Abstract

An algorithm for parallel computation of transient response for structures is presented in which

responses of substructures are computed independently for dozens of time steps at a time, and these

substructure responses are then corrected to obtain the response of the overall coupled structure.

The correction of the uncoupled substructure responses only requires the responses computed for

interfaces at occasional points in time, and is done independently for different substructures in a

very efficient procedure. A numerical example is presented to demonstrate the method and show the

accuracy of the method.

Introduction

A significant amount of effort has been directed recently toward the development of methods for

subdividing the computational effort associated with the solution of large transient response problems.

The general approach of subdividing the computation associated with a given problem on the basis of

a subdivision of the problem domain into subdomains has come to be known as domain decomposition

in the last few years. 1,2 For transient response problems in structural dynamics, some efforts in this

direction have been motivated by the need to solve problems for systems consisting of two or more

well-defined subsystems, such as the Shuttle orbiter and its payloads, using modal data that have

already been obtained for each of the subsystems rather than computing new modal data for the

combined system. 3-s Other work has been done in the context of the element-by-element approach

to finite element analysis, e'r More recently, Ortiz et al. have proposed methods specifically intended

for concurrent computation of transient response based on a subdivision of the problem domain into

subdomains, s,9 In their approach, an implicit integration scheme is used to obtain response for each

subdomain for a given time step, and the results of these computations are averaged at interfaces

to yield an approximation of the response of the overall system. Hajjar and Abel have investigated

the accuracy of these methods for certain structural dynamics transient response problems, and have

concluded that their accuracy is inadequate for these problems when practical time step sizes are
used. l°

In all of the transient response methods mentioned above, computation of response on the sub-

structure level can only be done independently for one time step at a time. In contrast to this, an

algorithm was presented recently by these authors which allows independent computation of sub-

structure response for an arbitrary number of time steps at a time. 11 After independent substructure

responses have been computed, they are corrected based on the interface motion computed for sub-

structures at each time step, to obtain the response of the combined structure. Allowing the response

to be computed independently for a number of time steps at a time reduces the interdependence be-

tween processors assigned to different substructures significantly, which can be important when the
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amountof computationrequiredfor differentsubstructuresis unequal.Also, if therearemoresub-
structuresthan processors,the costof swappingdifferentsubstructuresin andout of processorswill
be reducedif it canbedonelessfrequently.

In the presentpaper,anextensionof the algorithmpresentedin Ref. 11is presentedin which
independentsubstructureresponsecomputationcanproceedfor muchlongerperiodsof time. Inde-
pendentsubstructureresponsesaxecorrectedon thebasisof computedinterfacemotion sampledat
occasionalpointsin time. The correctionprocedurefor obtainingtheresponseof thestructurefrom
thecomputedsubstructureresponsesis extremelyefficientoncethe transientresponsecomputation
is underway,althoughthere issomecomputationaloverheadrequiredto setup the correctioncapa-
bility. A numericalexampleis presentedwhichillustratesthe methodand showsthe accuracythat
is obtained.

A Method Using Substructure-Level Response Computation

The algorithm presented in this paper is for computing the transient response of structures whose
motion is governed by the equation

- f : : -

M_ + Ci_ + Ku = F(t) (1)

where M, C, and K are taken to be constant mass, damping, and stiffness matrices,/i,/_, and u are

acceleration, velocity, and displacement vectors, and F(t) is a vector of forces exciting the system.

As mentioned in the Introduction, the transient response of a given structure is computed in this

algorithm by solving transient response problems for the substructures defined by decomposingthe
structure. To introduce the notation that will be used in this paper, a mass matrix fora structure

composed of two substructures is shown below, after a possible reordering of rows and corfimns:

M= + . (2)
0 _(2) M(L_

: :The superscripts |n parentheses tell -which:substrUcture a given matrix partition is associated with,

and the subscripts S and L refer to matrix partitions associated with shared, or interface, and local,

or internal degrees of freedom. For some of the development in this paper, a structure composed of

only two substructures is considered in an effort to simplify the presentation. However, the methods

presented will be applicable for an arbitrary number of substructures.

Because responses will be obtained for each of the substructures a structure is composed of, some

convention must be adopted for representing the structure response in terms of the substructure

responses, particularly at the interfaces. In this paper, the approach taken is similar to the standard

approach for the assembly of element matrices in the finite element method. The response of the

structure in interface degrees Of freedom is represented as the sum of the interface responses for the

substructures sharing the interface, e.g.,

so that each substructure's interface response is only one component of the total interface response

of the structure. Of course, if this convention is adopted, substructure transient response problems

must be defined and solved in such a way that the response of the structure obtained by a_sembling

together the substructure responses is accurate.
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Substructureresponseproblemscan be defined for independent computation by extracting equa-

tions from the structure equations of motion, a_nd they will be of the form

[ #(# (') +[;i:i :i::}
+ K K (D )

LL

where "hat" symbols identify matrix or vector partitions for which a policy for assigning the cor-

responding partitions in the structure equations of motion to the different substructures must be

determined. Again, reordering of rows and columns may be necessary to collect all "shared" degrees

of freedom together for a given substructure. Simply computing substructure responses that satisfy

these equations and assembling them together will not result in an accurate representation of the

response of the overall structure, because the interaction between substructures is neglected in such

an approach. It must be noted that in the response of the structure, each substructure has two

sources of excitation. One is the external applied force, which appears on the right hand side of the

equation above, and the other is due to interaction with adjacent substructures at the interfaces.

This suggests a two-step approach for computing the responses of substructures in the response of

the coupled structure. The first step consists of obtaining independent substructure responses that

satisfy the substructure equations of motion above. These responses neglect any interaction between

substructures, Then the second step consists of correcting these substructure responses to obtain

responses of substructures in the motion of the coupled structure. It will be shown that this second

step can be accomplished with a surprisingly small amount of effort, and with very little information

from the independent substructure responses.

If independent responses satisfying the substructure equations of motion are computed, and as-

sembled together and inserted into the structure equations of motion, a residual r(t) will be obtained.

For a two-substructure structure the residual will be given by

,-(t) = Mi_ + C_ + Ku - F

M(_ " ;tar (1)_vaL S

0 AAr(_)
_.XLS

+

+

C 0 )

0

0

"72

CL(1) o
S

CsO) ± _(2) CO)

CLL

,50). fi(2)
S T S

_,-(1) -L Jr,'(2) ) u(1) _ (2) F,.g
-tJ, SL ,t_SS T .il, SS S _-..I_'I'S -- "

By making use of Eq. (4), the residual can be obtained as

"_LS_S T t"L8 S + "_L$ S

rS(t ) = rs(t ) ,

r{_)(t) Az(2)/i (1} r,(2)_(1) K(2)u0)•"_LS S +_LS S + LS S

where

rs(t) = (M(_ + ""ss,, s + u(_))- ""ss's_'_rO-)'r0-) - ""ss"sn_rC2)'rC2)

(5)

(6)
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(f,(1) [-_(2) _(_(1)+ _ss + _ssJ_ s + _(2 )) _0)-0) _(2)u(2)-- (_SSUS -- _SS S

tK(*) K0),, (1) /_(1)U(1 ) k(2)U(2)+ ss + ss)tUs + - ss s - ss s

- Fs + ') +/2. (7)

Note that the residual associated with one substructure is given entirely in terms of the interface

motion computed for adjacent substructures. Note also that rs(t) is defined in terms of the "hat"

partitions of Eq. (4), and can be obtained as a null vector, if these "hat" partitions are chosen to
satisfy the following:

_0) _ _(2) ,_0). p(=)
SS -- _SS : _SS r _SS'

= R(s2)s . 1¢(2) (s)"* SS = "" SS " SS_

-F(S 1) "[- ,_-_(S2)= FS. "

With this as motivation, the "hat" partitions are taken to be defined this way in this paper. A physical

interpretation of this choice is that for each of the independent substructure response problems, the

structure is modeled as if it were clamped one node beyond the interfaces, and the excitation acting
on the structure at the interfaces is divided between the substructures that share the interfaces.

The residual in the equations associated with a given substructure can be seen to be a result

of including the interface motion of adjacent substructures in the given substructure's equations

of motion. This interface motion for adjacent substructures was neglected in the solution of the

independent substructure response problems. In order to obtain the true response of the structure,

the substructure responses must be corrected to account for adjacent substructures' interface motion,

so that when the substructure responses are assembled into the structure equations of motion, the
residual is zero.

For the correction to the first substructure's response, note that if the interface motion for the

second substructure were given, the residual in the structure equations of motion associated with

the first substructure would be defined. The first substructure's response would have to be corrected

by adding a response of the first substructure to the negative of the residual resulting from the

interface motion of the second substructure. The second substructure's response would have to be

corrected in a similar manner, if the interface motion for the first substructure were given. However,

the interface motion for both substructures is not known a priori, because all of the interface motion

will be changed as a result of the corrections to the substructure responses. The responses of both

substructures will have to be corrected simultaneously, so that the response of each substructure to

the negative residual due to the other's corrected interface motion will be added t0 the independently

computed substructure response. The following paragraphs present a method for accomplishing this.
Because the residual is defined in terms of interface motion, it is convenient to introduce a vector

v(k)(t) containing the interface accelerations, velocities, and displacements for the kth substructure
as

= (9)

With this definition, the correction of the first substructure's response to account for the second

substructure's interface motion will be the response to an excitation of the form

f0)(t) [ _,fO): --'0 LS /-,(1)--oL S K (1) ]- oLSJ v(2)(t), (10)
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wherethe degreesof freedomareorderedasin the structure equationsof motion. If the second
substructure'sinterfacemotion v(2)(t) is given only at the beginning and the end of a time interval

consisting of p time steps of length At, the interface displacement u{s2)(t) can be approximated over

the time interval 0 < t < pat by interpolation. Hence, u{s2)(t) is assumed to take the form

•L(2)tt _ [¢x(t)I ¢2(t)I ¢3(t)I]v(2)(O)SKI --

+ [¢4(t)I Cs(t)I ¢6(t)I]v(2)(P At) (11)

where I represents a unit matrix and ¢i(t), i = 1,... ,6 are interpolation functions that must satisfy

the following end conditions:

¢1(0) = 1,

_b2(0) = 1,

_3(0) = 1,

_J4(pAt) = 1,

_bs(pAt) = 1,

¢6(pAt) = 1,

_1(0) = _)1(0) _- _I(P At) : ¢I(P At) : ¢I(P At) : 0,

_2(0) = ¢2(0) = ¢2(pAt) = ¢2(pAt) = ¢_(pAt) = 0,
_3(0) = ¢3(0) = _;_(pAt) = ibm(pat) = ¢_(pAt) = 0,
_;,(0) = ¢,(0) = ¢,(0) = ¢,(pAt) = ¢,(pAt) = 0,
¢5(0) = ¢.5(0)= ¢5(0) = _(pAt) = ¢_(pAt) = 0,
¢6(0) = ¢6(0) = ¢6(0) = ¢6(pAt) = ¢6(P At) = 0.

(12)

Quintic polynomials were used for the results obtained in this paper. Expressions for /_(2)(t) and

i2(2)(t) for defining the excitation for correcting the first substructure's response are easily obtained

by differentiating the interpolation functions.

With u{s2)(t) defined in terms of v(2)(0) and v(2)(pAt), the corrected interface motion for the
first substructure at the end of the time interval will be the sum of the response to the independent

response problem and the response based on v(2)(t), 0 < t < pat. Hence, it will have the form

v(')(pAt)= v_1)(pAt)+ S12v(2)(0)+ T12v(2)(pAt), (13)

where each column of the matrices $12 and 7"12containsthe firstsubstructure'sinterfaceresponse

at t = pAt to a negativeresidualspecifiedby a column of the firstor second matrix,respectively,

on the right-handsideof Eq. (II).Using a similarapproach,the correctedinterfaceresponseof the

secondsubstructureatthe time t= pAt can be expressedin terms ofthe firstsubstructure'sinterface

motion as

v(2)(pat) = v_)(pat) + S21V(')(0) -{-T2,vO)(pAt). (14)

As mentioned above, corrected interface, motion for an adjacent substructure is not known before

the reconciliation is accomplished. All that is known in the two equations above is the interface

motion of both substructures at t = 0, from initial conditions, and the interface motion obtained

from the solution of the independent substructure transient response problems. However, given the

set of linear equations in Eqs. (13) and (14), it is straightforward to solve for the unknowns, with the

result that

(v(l)(pAt) [1_ 0 -10 S2,v(I)(0)J"

More compactly, the reconciled interface motion is given by

v(')(0) }
(vO)(pAt) = [I-T]-'[8 I]

V(2)(0)

¢2)(pAt)f '
  22 (pAt)

(15)

(16)
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wherethe matricesS and T are readily identified. The corrected motion for the first substructure's

local degrees of freedom at t = pat is given by

{
it(_)(pAt) } = f U(L'}i,d(PAt) S(L1) Tt 1) v(2)(0)_u(,)a(PAt)}+[ 1{ } (17)v(2)(pAt) ,

where columns of the matrices S 0) and T (1) contain responses in local degrees of freedom to interpo-

lation functions for representing interface motion. These two matrices axe naturally obtained at the

same time that the matrices 5'12 and T12 are obtained, from the solution of the same substructure

respon_probiemS. The c0rrec_motion in local degrees of freedom for the second subs{ructure is

obtained in the same manner. Once tile motion in both loc_ and s]lared degrees of freedomhas been

corrected for t = pAt, the initial conditions have been obtained for ongoing computation of response
for the next ptlme stepS. _: "..........

The developments presented here axe :easily applied to structures composed of more than two

substructures. For example, if there are three substructures, the matrices 5' and T in Eq. (16) take
the form

S= $21 0 $23 , T= T21 0 3 , (18)

LS31 $3_ 0 T31 T3_

and modification of the rest of the procedure presented for two substructures is Straightforward.

Infrequent Reconciliation of Substructure Responses _

In the method of the preceding section, responses are computed independently for different sub-

structures for p time steps at a time, and then the independent substructure responses are corrected

toobtain Substructure responses inthe response of the overall coupled structure. In this section, a

procedure for carrying out the reconciliation of independent substructure responses after a number of

p-step time intervals is developed. This procedure will allow substructure responses to be computed

independently for long periods of time without correcting for interaction between substructures.

The interface motion for the second substructure over the time interval pat < t < 2pAt can be

approximated in terms of the interpolation functions introduced in the preceding section and the

interface motion at the beginning and end of the time interval as

u(s2)(t) = [¢1(t*)I ¢2(t*)I ¢3(t*)X]v(2)(pAt) + [¢4(t*)I Cs(t*)I ¢6(t*)I]v(2)(2pAt), (19)

where t* = t -pat. Recalling that substructure responses have two components including the

response to external excitation, which is represented in the independent substructure responses, and

the response due to interaction with adjacent substruciures, which ]S represented in the correction to

the independent substructure responses, the interface response of the first substructure at the time

t = 2pAt will have the form

'V(1)(2pAl_) = "v}ln)d(2P__l_) "4- S12(2pAt)v(2)(0) -}- T12(2pAt)v(2)(pAt) + T12(pAt)v(2)(2pAt). (20)

Here, the columns of S12(2pAt) contain responses of the first substructure at t = 2pAt based on

the second substructure's interface motion, which is given in terms of the interpolation functions ¢1,

¢2, and ¢3 for 0 < t < pAt, and is extended as zero for pAt < t < 2pAt. Similarly, the columns

of T12(2pAt) contain responses of the first substructure at t = 2pAt based on interface motion of
the second substructure Which is given in terms of the interpolation functions ¢4, es, and es for

0 < t < pAt, and is extended in terms of ¢1, ¢2, and ¢3 for pat < t < 2pAt. The matrix T12(pAt)

is simply the matrix T12 of the preceding section.
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Theinterfacemotionfor both substructuresat t = 2pAt can be written as

72 (2pAt) l ¢:)(0)
",(1)(pAt) ",(1)(2pAt)

+ T(2pAt) ( v (2) (2pA t)

with 5' and T matrices defined in terms of 0, S12, $21, 0, etc., as in the last section.

v(i)(2pAt) and v(2)(2pAt) gives the result

{ }",(2pAt) = [I - r(pAt)]-l[S(2pAt) T(2pAt) I] ",(pAt)
",ind(2pAt)

where

Recalling that

v(ipAt) (vO)(ipAt)=- ",(2l(ipAt) }"

(21)

Solving for

(22)

(23)

(
",(0)

",(pAt) = [I- T(pAt)l-l[ S(pAt) I] l I (24)
",_.d(pAt) '

and letting A = [I - T(pAt)] -1, Si =--S(ipAt), and Ti =- T(ipAt), v(2pAt) can be obtained in terms

of initial conditions and independent substructure responses as

,,(2pAt) = A[(S2 + T_AS_) T2A I] ,,_d(pAt) . (25)
",ind(2pAt)

The corrected interface motion at t = 3pAt can be found using the same approach. When the

interface motion for the different substructures is assumed in terms of interpolation functions as in

Eq. (19), linear equations involving ",(3pAt) can be written as in Eq. (21). These equations ca_ be

solved for v(3pAt), yielding the result

,,(pAt) (26)
",(3pAt)=A[S3 T3 T2 I] ",(2pAt) "

vind(3pAt)

Interpolation functions are simply extended as zero into the time interval 2pAt < t < 3pAt in the

generation of responses for matrices $3 and T3. Inserting the expressions for v(pAt) and v(2pAt)

from Eqs. (24) and (25) gives v(3pAt) in terms of initial conditions and independent substructure

responses as

v(3pAt) = A[(S3 + T2AS2 + (T3A + (T2A)2)81) (TzA + (T2A) 2)

(T2A) I] vi'_d(pAt) (27)
vina(2pAt) "

vmd(3pAt)

This result can be generalized for finding the corrected interface motion at a time t = mpAt, with

the result that

v(mpAt) = A BiSm-i Bin-1 Bin-2 "'" Bo i '

vi_a(mpAt)
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whereB0 - I, and the other B_ matrices are defined by the recursive formula

i-1

Bi =- Y_(Ti-t+lA)Bl,

/--0

(29)

so that B1 = T2A, B2 = T3A 4- (T2A) 2, B3 = T4A 4- T3AT2A 4- T2AT3A 4- (T2A) 3, etc. Defining a

matrix Cm as

Cm _ A BiSm-i Bin-1 Bin-2 "'" Bo , (30)

the corrected interface motion can be obtained separately for each substructure by partitioning Cm

into upper and lower halves C_} and C'_), and multiplying each by the vector on the right hand side

of Eq. (28). For parallel computation, if different processors axe assigned to different substructures,

the processor for the kth substructure only needs to have access to C'_) and the interface motion

computed independently for all substructures for every pth time step.
After interface motion has been corrected for t = mpAt, the motion for local degrees of freedom

for each substructure can be corrected. As an example, the corrected local motion for the first

substructure will be given by

= + [-Lm -Lm "'"

where the matrices S(L_) and TL(_) contain responses in local degrees of freedom to interface motion

.... given in terms of interpolation functions, and are analogous to the Si and Ti matrices Used above in
terms of subscript numbering. The vector :of the second substructure's corrected interface motion at

every pth time step is given in terms of the _ndependently computed _nterface respofises as:

}
v(2)(P At) =

0 I 0 0 0

[ ] o
,,(o) }

_,_,,d(p/xt)

vi,,d(mpAt)

(32)

Therefore, the product of the matrix on the right hand side of Eq. (31) and the matrix on the right

hand side of Eq. (32) is the matrix by which the vector of independently computed interface responses

must be multiplied to obtain the correction for the motion in local degrees of freedom for the first

substructure. The same approach is taken to find the correction for the motion in local degrees of

freedom fQr the se-¢pnd :_ub_tyuctu_,

To summarize, the developments presented in this section permit the independent computation
of response for different substructures for a tot_ time interval of length mpAt. The interface motion

for all of the substructures at the end of this time interval can be corrected using Eq. (28), and then

the motion for local degrees of freedom for each of the substructures can be corrected as shown above.

Once these corrections are made, initial conditions are obtained so that independent computation of

substructure responses can proceed again for another mpAt. The amount of computation required

for the corrections is very small compared to the amount of computation required for obtaining the

independent substructure responses. The computational "overhead" that is required for this method

consists of obtaining substructure responses to interface motion specified in terms of interpolation
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Figure 1: Plane truss used in the numerical example, and its division into substructures.

functions, and carrying out the matrix operations outlined above to obtain the matrices required for

making corrections. This overhead is justified if the transient response of the structure must be com-

puted for a long time. The amount of computation required both for the "overhead" operations and

for the corrections is determined by the dimensions of the matrices involved, which is determined in

turn by how many shared and local degrees of freedom are associated with each of the substructures.

Numerical Example

The algorithm presented in this paper is demonstrated on an example structure which is shown

in Fig. 1. The structure is a plane truss composed of 143 aluminum members, each of which has an

elastic modulus of E = 70 x 109 N/m 2, a cross-sectional area of A = 4 × 10 -4 m 2, and a density of

p = 2710 kg/m 3. The dimensions are as shown. A force is applied to the top right corner of the truss

starting at t = 0, and it is given by

F(t) = 5(1 - cos _t) (Newtons), (33)

where f/= 590.3 radians per second, which is between the second and third natural frequencies of

the structure. The truss has eighty-eight degrees of freedom, and is assumed to have proportional
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Figure 2: Plots of exact response (dashed line) and computed response (asterisks).

damping of the form C = aM + ilK, where a a_nd I are chosefi to give modal damping factors

between one and five percent. For application of the algorlthm=preiented in this p:aper, the structure

was partitioned at the top of the sixth bay into two substructures, which are also shown in Fig. 1.

Note that each substructure is modeled in the algorithm as being effectively clamped one truss bay

beyond the interface, as shown in the figure,: .....

In Fig. 2, the horizontal displacement of the structure at the point where the excitation is applied

is plotted. The dashed line is a plot of the exact response, obtained from a mode-by-mode exact

solution, and the asterisks represent values that were obtained using the algorithm of this paper. The

responses of the two substructures were obtained using an algorithm that finds the exact response to a

piecewise linear approximation of the excitation. 12 A time step of At = 3.74 x 10-4 seconds was used,

which is equal to about one twenty-eighth of the period of the excitation, and is also approximately

equal to the period of the highest mode of the structure. For larger time steps, the err0r becomes

visible on a plot scaled as in Fig. 2, when th e piecewise linear al.g0rithm is usedon the structure
as a whole. In-thls example, substructure responses were computed independently for sixty time

steps at a time, and then corrections to the independent substructure responses were made ba_ed

on the interf_e motion computed for every tenth time step. Therefore, the quintic interpolation

polynomials for interface motion were defined Over time intervals of length pAt with p equal to ten,

and there were six of these time intervals in e_ch time period over which independent substructure
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responseswerecomputed.
Becausethe responseof thestructurewasonly correctedforeverysixtieth timestep,theasterisks

on the plot in Fig. 2 aresixty time stepsapart. It shouldbenoted,however,that the responsefor
anydegreeof freedomat anytime canbeobtainedin a straightforwardmannerwith asmallamount
of additionalcomputation.Fromthe plot of Fig. 2, it is evidentthat the accuracyobtainedin this
exampleisquiteadequatefor mostpurposes,eventhoughthecorrectionsto independentsubstructure
responseswere madebasedon a very limited amountof information. The only approximations
madein obtainingtheseresultswerein thepiecewisehnearapproximationof the excitationandthe
piecewisequintic approximationsof the interfacemotion.

Summary
In this paper,an algorithm is presentedfor computingthe transientresponseof structuresby

computingthe transientresponsesof substructures.The algorithm is well suitedfor parallel im-
plementation,wherea differentprocessorwouldbe assignedto eachsubstructure. The fact that
computationcanproceedindependentlyfor differentsubstructuresfor dozensof timestepsat atime
reducesthe interdependencebetweenprocessors,whichcanbeof considerableimportancewhendif-
ferentsubstructuresrequiredifferentamountsof computationaleffort per time step.The correction
of independentlycomputedsubstructureresponsesto obtainthe responseof the structureactingas
a wholerequiresonly the interfacemotioncomputedfor substructuresat occasionalpointsin time.
This correctionof substructureresponsescanbedoneindependentlyfor differentsubstructuresonce
the interfacemotion for all of the substructureshasbeencomputed,and this correctionrequires
very little effort. Becauseof this, the total amountof computationrequiredusingthis approachwill
be only slightly greaterthan the amountrequiredto solvethe transientresponseproblemfor the
structureasa wholefor manyproblems.A surprisinglyhigh levelof accuracyis obtainedusingthis
algorithm, in view of howlittle informationis requiredfor makingcorrectionsto the independent
substructureresponses.
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